建筑橡膠支座安裝后的定期檢查實施方案橡膠支座的檢查對建筑橡膠支座應進行以下幾個方面的檢查:(橡膠支座是否完好、清潔,有無斷裂、錯位、脫空。
經濟性好:與其他隔震系統相比,摩擦擺支座的制造成本較低,維護簡單。
從3中可以看出,加入板式橡膠支座后,流入各橋墩總的功率流發生了變化:普通活動支座時,由于活動墩與梁部無水平聯系,從梁部傳下的功率流,全部流入固定墩,流入橋墩的總功率流實際上反應的是流入固定墩的功率流,功率流曲線比較平坦;加入板式橡膠支座后,加強了活動墩與梁部的聯系,功率流在各個活動墩之間分配,隨著支座水平剛度的增加,總功率流減小;當激振頻率與某活動墩的自振頻率接近時,即結構發生準共振時,則流入該墩的功率流增加,總功率流局部會出現峰值。
地大物博,各地溫度變化很大,南方夏季高達四十度的高溫,會讓混凝變形融化,如果不能有效計算出南方冬夏溫差值,繼而對溫差產生的位稱值有充分的認識,那么就會在橡膠支座的設置上產生偏差,也就達不到保護公路或建筑的作用。
后安裝下預埋板,然后綁扎進行橡膠隔震墊的安裝施工。具體工藝為:后澆帶或后澆塊的施工要求(包括補澆時間要求);后來幾個交叉依照橫梁參考。滑動型支座設置時應注意其滑動方向與建筑的主位移方向一致。緩緩落梁,擰入上錨固螺栓,移除千斤頂,抽換完成。回填標高以控制瀝青不會污染預埋鋼筋為宜,目的在于防止攤鋪備壓壞預埋鋼筋,便于路面連續攤鋪。繪出定位軸線及梁、柱、承重墻、抗震構造柱位置及必要的定位尺寸,并注明其編號和樓面結構標高;繪制施工記錄表及豎向變形觀測表等;混凝土構件的環境類別;混凝土及帽梁有無凍脹、風化、開裂、剝落、露筋等。混凝土鉸曾在建筑中有所應用,支承反力可達10000KN。混凝土鉸是簡單、廉價的中心可轉動的支座。混凝土鉸有各種類型,建筑上常用弗萊西奈鉸。混凝土結構采用平面整體表示方法時,應注明所采用的標準圖名稱及編號或提供標準圖。混凝土梁的裂縫,不論是鋼筋混凝土還是預應力混凝土都是普遍存在的。混凝土設置澆灌混凝土用之模板在下預埋板的周邊設置模板。活動支座采用聚四乙烯加硅脂與精軋不銹鋼板對滑,可減少結構尺寸。活動支座除了能沉著地遷移轉變外,還應應允在活載及溫度變卦時,梁端可縱向水準挪動。
這也是我市個引入隔震技術的建筑,開創了大連地區建筑應用隔震技術先河,是大連地區率先按八度設防又應用隔震技術的建筑物,其抗震設計充分考慮了潛在的地震風險。
請關注:保證橡膠支座的安全及施工完成后的維護工作常用的建筑橡膠支座的類型簡易墊層支座:適用于跨徑小于10M的簡支板或簡支梁橋。
橡膠隔震支座組裝時,連接板上的螺栓應分次擰緊或采用2人對擰,以防止連接板與橡膠墊疊合不好而發生翹曲;

(圖一)建筑抗震減震支座
板式橡膠支座是通過聚醚聚氨脂的變形來適應支座的轉動要求,因此聚醚聚氨脂橡膠圓盤應有足夠的則度,以承受垂直荷載,不發生過度的變形,同時又要有足夠的柔度以適應轉角的需要,不發生脫空,且不會產生過大的應力傳遞給其它的構件,如聚四氟乙烯板。
作用于建筑支座的反力、位移和轉角在直角坐標系中可分別用6個力(FX、FYFZ、M1M和6個變位(VZ,VY,VX,R1,R和RZ來表/力。
橡膠支座材質鑒定流程:樣品通過估量、樣品分離、儀器分析、專家解譜、逆向分析五個步驟,核磁分析、XRD/XRF、FTIR紅外、GC-MS分析法等大小儀器10余臺聯用,得到正確的譜信息,配方分析還原,指引研發方向。
基于性能的抗震設計方法在實際應用過程中迅速發展并走向成熟,目前已經在越來越多的結構類型中得以應用并取得很好的效果,如鋼結構、鋼—混組合結構等。值得一提的是,隔震結構和消能減震結構性能化設計一方面提升了結構自身的抗震性能,另一方面也促進了減隔震技術的發展。此外,性能化設計也不再單單局限于主體結構,其應用范圍已經擴展到非結構構件,如砌體填充墻、玻璃幕墻、管道系統、照明系統、消防系統、通信設備等。
支座的更換支座的更換方法可以采用大噸位、低高度液壓千斤頂通過液壓泵站控制千斤頂整體頂升全斷面或同一墩臺頂面梁體進行支座更換。
按照結構形式:弧形支座,擺柱支座,板式橡膠支座,限位型板式橡膠支座,球冠圓板式橡膠支座,盆式橡膠支座,減震支座等。
另外,要控制下料的毛刺,過大的毛刺如在后序不能消除,在支座安裝后,壓縮及剪切變形時均使鋼板中間膠層向外流動,由于毛刺阻礙膠的流動,易撕裂橡膠而形成空洞(內裂)。
多跨連續直梁橋在多跨結構中,橡膠支座的作用更為重要,因為結構的多跨連續要求較大的伸縮位移量,在這種結構中通常應使用金屬橡膠支座,但在年溫差和濕度差很小的情況下,仍可采用橡膠橡膠支座。

(圖二)LRB400鉛芯支座生產廠家
由鑄鋼上、下擺組成,兩擺之間嵌以擺卡,以控制橫向滑動。有方框支撐、圓框支撐、交叉支撐、斜桿支撐、K型支撐等。有高阻尼橡膠和鋼板分層疊合經高溫硫化粘結而成,具有較高阻尼性能的疊層橡膠隔震支座。有基坑時應對基坑設計提出技術要求。有人預言,未來的建筑物在地震中可以像漂在水中的船一樣搖擺而不倒塌。有時候是購買后客戶咨詢如何使用,大多時候我們會逐一采取售后跟蹤,了解客戶真正需求。有時也可每隔2~3個支墩交替也采用總鉸支承和抗扭支承。有一個冠球支座,但其使用功能還不是很清楚。又稱平橋、跨空梁橋,是以橋墩做水平距離承托,然后架梁并平鋪橋面的橋。又可用預加拉應力來提高結構的抗壓能力。
橡膠支座安裝后,若發現問題需要調整時,可吊起梁端,在橡膠支座底面與支承墊石面之間抹一層用水灰比不大于0.5的1∶3水泥砂漿抹平。
單向活動支座順橋向位移量與多向活動支座相同,橫橋向位移量為順橋向位移量十分之一,所以當橫橋向位移量不大時,可選擇單向活動支座。
隨著現代科技的發展,為了有效提高建筑物抗震能力,科學家們開始發展隔震、減震與結構控制技術。在堅固基礎上的結構在大地震作用下猶如一個“放大器”,一般會放大結構的振動響應,造成上部結構的破壞。傳統抗震技術采用的是通過加大結構斷面尺寸和配筋,使結構變得“剛強”的方式來抗御地震作用,或者容許結構構件有損壞,利用構件損壞后的韌性(結構進入非彈性狀態)來降低地震作用,使結構“裂而不倒”。前一種“硬抗”方法不經濟,有時也難以抵御強烈地震;后一種增加韌性的方法,在大震時,雖然結構不會倒塌,但是無法控制。所以20世紀70年代后期開始,科學家們發展了隔震與結構消能減震技術來增強結構的抗震能力。
橡膠支座處置方案的確定我們首先根據建筑的結構特點,若為左、右幅,更換時可左、右幅分別進行操作,起頂所用的設備應綜合考慮各種不利因素的影響,不破壞橋面結構。
曲率半徑:曲率半徑過大可能導致橋板大幅度晃動,增加落梁的概率;曲率半徑過小則會使減震球擺的晃動太小,不利于消耗地震能量。在高速鐵路橋梁摩擦擺支座隔震設計中,應當考慮曲率半徑對梁體位移、支座殘余位移和橋墩內力的影響,再因地制宜選擇合適的曲率半徑。
在硫化機上的硫化時間和溫度控制也很重要,不同的規格的橡膠支座硫化時間是不一樣的,如果達不到相應的硫化時間,那么就會形成夾生,里邊的膠沒有充分硫化,影響橡膠支座和板式橡膠支座產品質量。
LRB系列鉛芯隔震橡膠支座是按照國家及行業相關標準,同時參考歐洲標準研制開發的橋梁標準構件產品。該產品分為矩形和圓形兩種類型,適用于8度及8度以下地震區各類公路及市政橋梁。

(圖三)圓形隔震支座生產廠家
隔震系統的位移能力不足。依據AASHTO標準驗算可得,該高架橋隔震系統的大位移為820MM。而原設計的隔震系統的極限位移僅有210MM(滑動支座)——480MM(屈服耗能裝置的極限位移)。通過利用博盧和達茲兩處地震觀測站分別對地震場地進行了地面運動情況的觀測,并模擬了近斷層的運動情況,得到的峰值位移應為1400MM。這巨大的差別說明了該設計不僅非常不合理(隔震的兩部分位移能力不同),也遠遠不能滿足達茲近場大地震的要求。
此外,建筑摩擦擺減隔震支座也是一種經過大量技術改進和試驗驗證而得到的新型摩擦擺減隔震支座,其結構是一種基于摩擦單擺結構改進而成,并且介于摩擦單擺和等直徑摩擦復擺之間的新型結構。
按技術性能可以分為:A.支座豎向轉角≥40′;豎向承載力1000-50000KN共分28級,非滑移表面的水平承載力為豎向的10%;摩擦系數:常溫型μ≤0.04;耐寒型μ≤0.06盆式橡膠支座壓縮變形值不得大于支座總高度的2%,盆環的徑向變形不得大于盆環外徑的0.5‰其中固定式非滑移方向的水平承載力均不小于支座堅向承載力的10%。
此外,《規范》公式沒有能夠恰當考慮滑板支座的摩擦耗能作用,隨著地震烈度水平的增加滑板支座發生較大的滑移,同時消耗大量的地震能量,從而顯著降低結構的響應。
經過長期施工我們總結出了一套可廣泛應用的橡膠支座更換技術,從方案的確定、施工過程、施工注意事項出發,保證建筑支座作用的正常發揮。
通過對全國范圍內130個項目、335萬平米減隔震建筑工程進行調查,在建筑抗震性能大幅提高的前提下,九度抗震設防區采用減隔震技術,結構造價明顯降低5%左右;八度設防區工程造價略降低或持平;七度區工程造價略增加,通常增加約100元/平方米。從長期經濟效益和建筑全壽命周期的費用—效益分析來看,建筑物若遭遇較大地震,傳統抗震建筑將造成結構和財產兩個方面損失,同時導致企業、工廠等不能正常工作造成經濟損失。而隔震建筑在遭遇較大地震時,建筑功能完好,財產不損失,因此,隔震建筑長期經濟效益較好。
大量使用橡膠支座,可保大橋安全無恙在的東南沿海地帶,高發的臺風、地震和所引發的海嘯常常會危脅建筑、公路的安全。
還有從球型支座轉化來的網架支座產品球型拉壓支座,這類產品的轉角比較大,且受力面比較均勻,不產生力的頸縮。
24小時咨詢熱線:
13323182312
QQ在線咨詢:
839308866
微信號:
13323182312